教程
原文链接 : http://zeppelin.apache.org/docs/0.7.2/quickstart/tutorial.html
译文链接 : http://www.apache.wiki/pages/viewpage.action?pageId=10030571
本教程将引导您了解Zeppelin的一些基本概念。我们假设你已经安装了Zeppelin。如果没有,请先看这里。
Zeppelin当前的主要后端处理引擎是Apache Spark。如果您刚刚接触到该系统,您可能希望首先了解如何处理数据以充分利用Zeppelin。
本地文件教程
数据优化
在开始Zeppelin教程之前,您需要下载bank.zip。
首先,将csv格式的数据转换成RDD Bank对象,运行以下脚本。这也将使用filter功能删除标题。
val bankText = sc.textFile("yourPath/bank/bank-full.csv")case class Bank(age:Integer, job:String, marital : String, education : String, balance : Integer)// split each line, filter out header (starts with "age"), and map it into Bank case classval bank = bankText.map(s=>s.split(";")).filter(s=>s(0)!="\"age\"").map(s=>Bank(s(0).toInt,s(1).replaceAll("\"", ""),s(2).replaceAll("\"", ""),s(3).replaceAll("\"", ""),s(5).replaceAll("\"", "").toInt))// convert to DataFrame and create temporal tablebank.toDF().registerTempTable("bank")
数据检索
假设我们想看到年龄分布bank。为此,运行:
%sql select age, count(1) from bank where age < 30 group by age order by age
您可以输入框通过更换设置年龄条件30用${maxAge=30}。
%sql select age, count(1) from bank where age < ${maxAge=30} group by age order by age
现在我们要看到具有某种婚姻状况的年龄分布,并添加组合框来选择婚姻状况。跑:
%sql select age, count(1) from bank where marital="${marital=single,single|divorced|married}" group by age order by age
具有流数据的教程
数据优化
由于本教程基于Twitter的示例tweet流,您必须使用Twitter帐户配置身份验证。要做到这一点,看看Twitter Credential Setup。当您得到API密钥,您应填写证书相关的值(apiKey,apiSecret,accessToken,accessTokenSecret与下面的脚本您的API密钥)。
这将创建一个Tweet对象的RDD 并将这些流数据注册为一个表:
import org.apache.spark.streaming._import org.apache.spark.streaming.twitter._import org.apache.spark.storage.StorageLevelimport scala.io.Sourceimport scala.collection.mutable.HashMapimport java.io.Fileimport org.apache.log4j.Loggerimport org.apache.log4j.Levelimport sys.process.stringSeqToProcess/** Configures the Oauth Credentials for accessing Twitter */def configureTwitterCredentials(apiKey: String, apiSecret: String, accessToken: String, accessTokenSecret: String) {val configs = new HashMap[String, String] ++= Seq("apiKey" -> apiKey, "apiSecret" -> apiSecret, "accessToken" -> accessToken, "accessTokenSecret" -> accessTokenSecret)println("Configuring Twitter OAuth")configs.foreach{ case(key, value) =>if (value.trim.isEmpty) {throw new Exception("Error setting authentication - value for " + key + " not set")}val fullKey = "twitter4j.oauth." + key.replace("api", "consumer")System.setProperty(fullKey, value.trim)println("\tProperty " + fullKey + " set as [" + value.trim + "]")}println()}// Configure Twitter credentialsval apiKey = "xxxxxxxxxxxxxxxxxxxxxxxxx"val apiSecret = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"val accessToken = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"val accessTokenSecret = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"configureTwitterCredentials(apiKey, apiSecret, accessToken, accessTokenSecret)import org.apache.spark.streaming.twitter._val ssc = new StreamingContext(sc, Seconds(2))val tweets = TwitterUtils.createStream(ssc, None)val twt = tweets.window(Seconds(60))case class Tweet(createdAt:Long, text:String)twt.map(status=>Tweet(status.getCreatedAt().getTime()/1000, status.getText())).foreachRDD(rdd=>// Below line works only in spark 1.3.0.// For spark 1.1.x and spark 1.2.x,// use rdd.registerTempTable("tweets") instead.rdd.toDF().registerAsTable("tweets"))twt.printssc.start()
数据检索
对于每个以下脚本,每次单击运行按钮,您将看到不同的结果,因为它是基于实时数据。
我们开始提取包含单词girl的最多10个tweets 。
%sql select * from tweets where text like '%girl%' limit 10
这次假设我们想看看在过去60秒内每秒创建的tweet有多少。为此,运行:
%sql select createdAt, count(1) from tweets group by createdAt order by createdAt
您可以在Spark SQL中进行用户定义的功能并使用它们。让我们通过命名函数来尝试sentiment。该功能将返回参数中的三种态度之一(正,负,中性)。
def sentiment(s:String) : String = {val positive = Array("like", "love", "good", "great", "happy", "cool", "the", "one", "that")val negative = Array("hate", "bad", "stupid", "is")var st = 0;val words = s.split(" ")positive.foreach(p =>words.foreach(w =>if(p==w) st = st+1))negative.foreach(p=>words.foreach(w=>if(p==w) st = st-1))if(st>0)"positivie"else if(st<0)"negative"else"neutral"}// Below line works only in spark 1.3.0.// For spark 1.1.x and spark 1.2.x,// use sqlc.registerFunction("sentiment", sentiment _) instead.sqlc.udf.register("sentiment", sentiment _)
要检查人们如何看待使用sentiment上述功能的女孩,请运行以下操作:
%sql select sentiment(text), count(1) from tweets where text like '%girl%' group by sentiment(text)
